Advanced Topics on Weighted Tree Automata

Exercise 1 (Proving Lemma 4)
Lemma 4 (Stüber, Vogler, and Fülöp, 2009) essentially states that, given a multioperator monoid \mathcal{A} and a ranked alphabet Σ, the weighted tree language $\lbrack M \rbrack$ recognized by a weighted tree automaton M over \mathcal{A} and Σ can also be expressed by the composition $\lbrack \rho \rbrack; \chi_{\lbrack G,H \rbrack}; \lbrack M_{\text{hom}} \rbrack$, where

- $\rho : T_\Sigma \rightarrow \mathcal{P}_{\text{fin}}(T_\Delta)$ is a non-overlapping relabeling,
- (G, H) is a local tree grammar over the alphabet Δ, and $\chi_{\lbrack G,H \rbrack} : T_\Delta \rightarrow \mathcal{P}_{\text{fin}}(T_\Delta)$ is the partial identity of its generated local tree language,
- $M_{\text{hom}} = (Q_{\text{hom}}, \delta_{\text{hom}}, F_{\text{hom}})$ is a hom-wmta over \mathcal{A} and Δ, i.e., $|Q_{\text{hom}}| = |F_{\text{hom}}| = 1$.

The construction of ρ, (G, H) and M_{hom} has already been detailed in the lecture. Now complete the proof to assure yourself that these do indeed constitute a decomposition of M, i.e. that

$$\lbrack M \rbrack = \lbrack \rho \rbrack; \chi_{\lbrack G,H \rbrack}; \lbrack M_{\text{hom}} \rbrack.$$

Exercise 2 (FTA; WMTA(\mathcal{A}) \subseteq WMTA(\mathcal{A}))
Presuming a ranked alphabet Σ, as well as an absorptive multioperator monoid \mathcal{A}, prove that, given an fta B and a wmta M over \mathcal{A} and Σ, one can construct another wmta M' over \mathcal{A} and Σ such that

$$\lbrack M' \rbrack = \chi_{\lbrack \mathcal{A} \rbrack}; \lbrack M \rbrack.$$

References